

# **COST-EFFECTIVE QUANTITATIVE ANALYSIS OF ARM AND HAND MOTION TO** AID IN STROKE REHABILITATION.

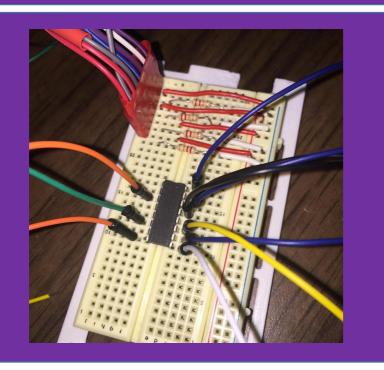
**DHVANIL SHAH, ROY FINKELBERG: STATEN ISLAND TECHNICAL HIGH SCHOOL** SHANTANU JHA: STUYVESANT HIGH SCHOOL FACULTY MENTOR: DR. VIKRAM KAPILA GRADUATE MENTORS: ASHWIN RAJ KUMAR, SAIPRASANTH KRISHNAMOORTHY

# **Existing Technologies**

Current stroke rehabilitation technologies

Wolf Motor Function Test

**Optical Sensing System** 


- Qualitative
- Low cost
- Subjective

- Prohibitively expensive
- Most precise
- Restricted to use in laboratories









Through the combined use of microcontrollers, inertial measurement unit (IMU) sensors, and flex sensors, we fully processed and mapped arm and hand motion.

Audience: Stroke Patients with Hemiparesis Data collection: mechanical development of our hand and arm sensor system

Data transfer: Reading and Streaming of data from our various sensors Data visualization and analysis: Software that doctors can interact with in order to graphically visualize and analyze the stored motion.

Integrated, low-cost, and modular system



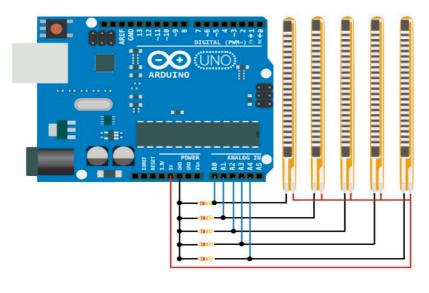
## Abstract

# Bill of Materials

1 - Arduino Uno : \$25 1 - Multiplexer - mux4051: \$2 3 - MPU-6050: \$36 4 – Flex Sensors: \$44 Total Cost: \$107

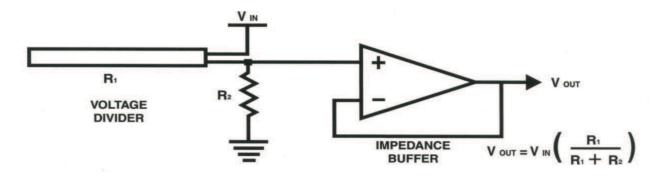
Measured Data:

- Linear Acceleration on three Axes (X,Y,Z)
- Euler angles between IMU's





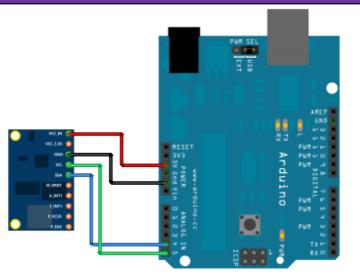



### Flex Sensors



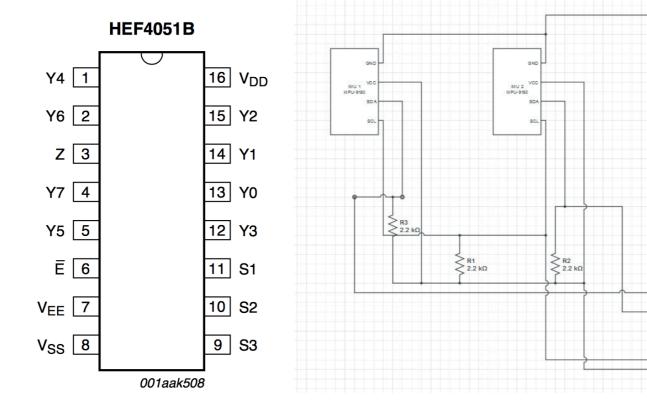
The resistance of the sensor changes flex when the metal pads are on the outside of the bend. The change in resistance changes the voltage, which is read by the analog pins of the Arduino.


**BASIC FLEX SENSOR CIRCUIT:** 

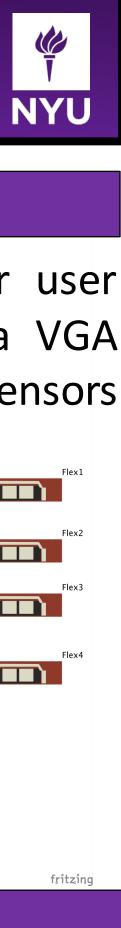


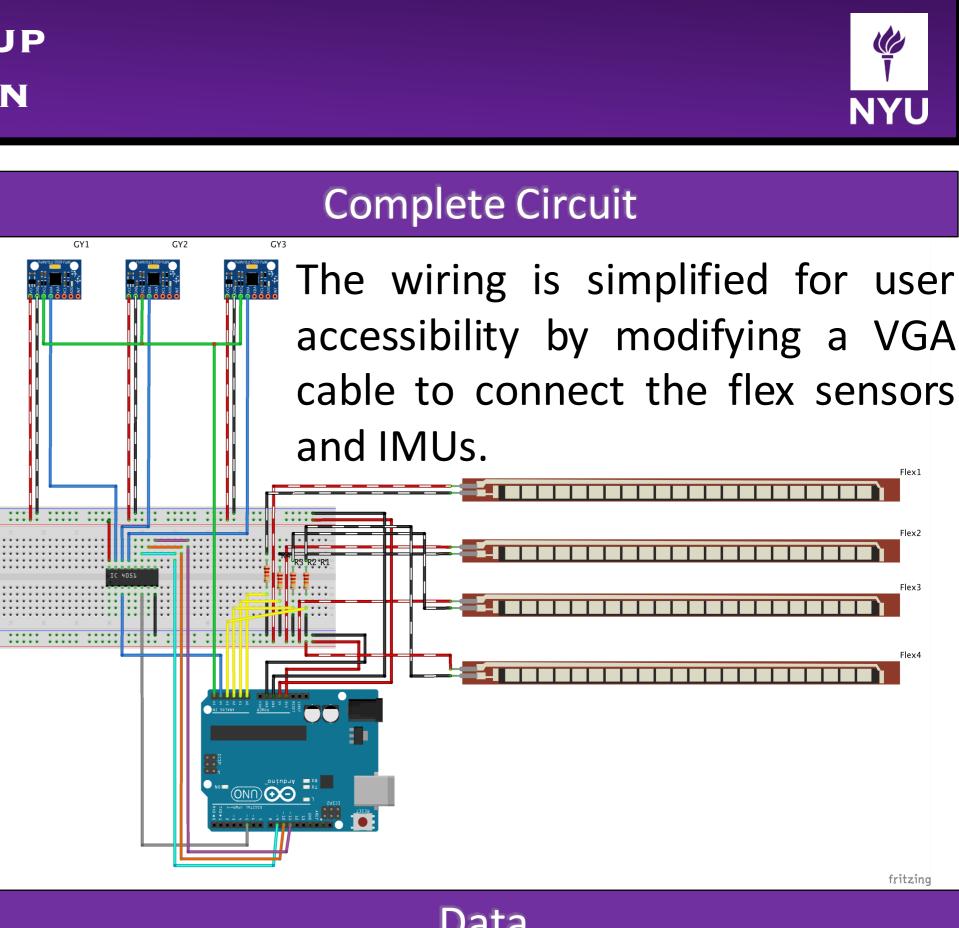
Following are notes from the ITP Flex Sensor Workshop

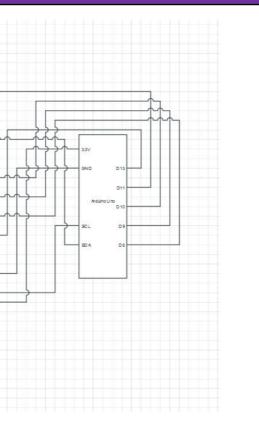
# Inertial Measurement Unit (IMU)


This a MPU-6050. It contains a MEMS accelerometer and a MEMS gyro in a single chip.




I2C-bus to The sensor uses the interface with the Arduino. They have a serial data line (SDA) and a serial clock line (SCL). These lines connect to the SDA and SCL on the Arduino, which are on A4 and A5 respectively.


### Multiplexer


Using a HEF4051B analog multiplexer to switch between SDA lines of multiple IMUs.

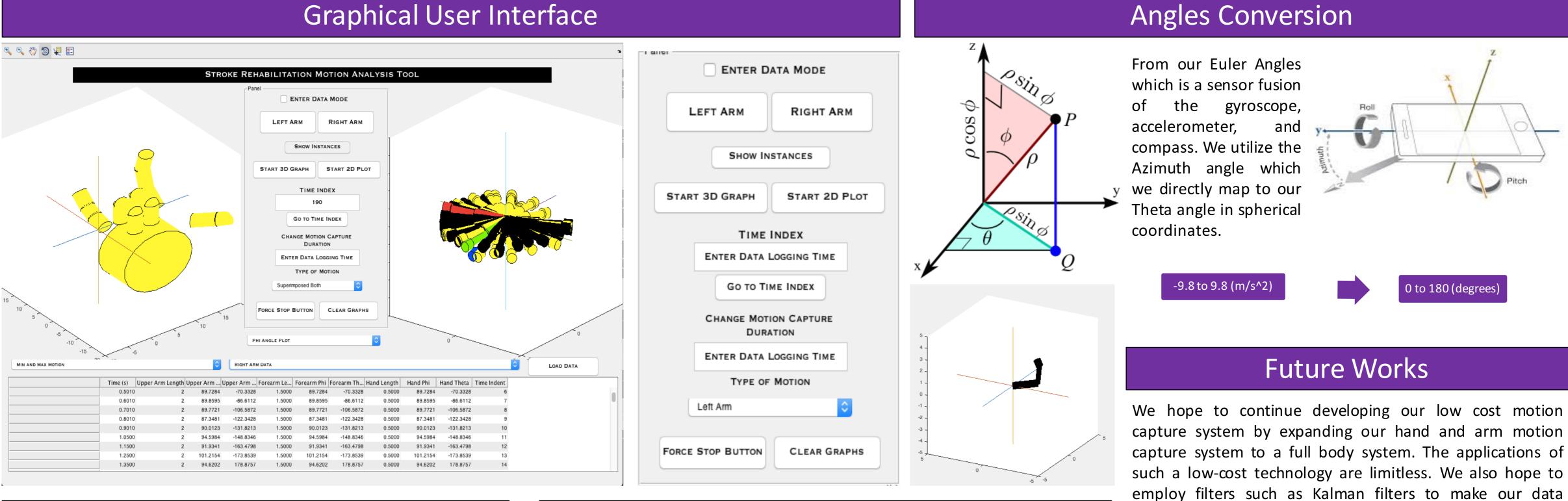


# **MECHANICAL SETUP** DATA ACQUISITION








The raw Arduino flex sensor readings are mapped to an appropriate angle range. The IMU readings are similarly mapped in Matlab.

#### Data

| /dev/cu.usbmodem1411 (Arduino Uno) |                                                                                     |        |  |  |
|------------------------------------|-------------------------------------------------------------------------------------|--------|--|--|
|                                    |                                                                                     | Send   |  |  |
| IM                                 |                                                                                     |        |  |  |
| AcX = -508   AcY = -1772<br>IMU 2  | AcZ = 16360   Tmp = 25.24   GyX = -337   GyY = 141   GyZ = -226                     |        |  |  |
| AcX = 0   AcIMU 1                  |                                                                                     |        |  |  |
| $AcX = -528 \mid AcY = -1788$      | AcZ = 16244   Tmp = 25.24   GyX = -338   GyY = 98   GyZ = -216                      |        |  |  |
| IMU 2                              |                                                                                     |        |  |  |
| ACX = -412   ACY = -1208<br>IMU 3  | AcZ = 16044   Tmp = 24.53   GyX = -389   GyY = 148   GyZ = -45                      |        |  |  |
|                                    | +   AcZ = 18588   Tmp = 24.53   GyX = -458   GyY = 209   GyZ = 21                   |        |  |  |
| IMU 1                              |                                                                                     |        |  |  |
| AcX = -608   AcY = -1772<br>IMU 2  | AcZ = 16244   Tmp = 25.24   GyX = -345   GyY = 98   GyZ = -226                      |        |  |  |
|                                    | AcZ = 16020   Tmp = 24.81   GyX = -398   GyY = 151   GyZ = -45                      |        |  |  |
| IMU 3                              |                                                                                     |        |  |  |
|                                    | 0   AcZ = 18480   Tmp = 24.62   GyX = -464   GyY = 199   GyZ = 4                    |        |  |  |
| IMU 1<br>AcX = -448   AcX = -1696  | AcZ = 16264   Tmp = 25.19   GyX = -337   GyY = 115   GyZ = -218                     |        |  |  |
| IMU 2                              | + ACZ = 1020+ + 100 = 25.15 + 000 = -557 + 001 = 115 + 002 = -210                   |        |  |  |
|                                    | AcZ = 15884   Tmp = 24.91   GyX = -409   GyY = 178   GyZ = -51                      |        |  |  |
| IMU 3                              | A LAST 19476 LTmm 24 67 LCvV 447 LCvV 215 LCv7 14                                   |        |  |  |
| ACX = -1450   ACT = -2540<br>IMU 1 | 0   AcZ = 18476   Tmp = 24.67   GyX = -447   GyY = 215   GyZ = 14                   |        |  |  |
|                                    | AcZ = 16256   Tmp = 25.24   GyX = -337   GyY = 116   GyZ = -217                     |        |  |  |
| IMU 2                              |                                                                                     |        |  |  |
| AcX = -404   AcY = -1348<br>IMU 3  | AcZ = 15888   Tmp = 24.95   GyX = -423   GyY = 156   GyZ = -54                      |        |  |  |
|                                    | 3   AcZ = 18392   Tmp = 24.67   GyX = -474   GyY = 226   GyZ = -4                   |        |  |  |
| IMU 1                              |                                                                                     |        |  |  |
|                                    | AcZ = 16404   Tmp = 25.33   GyX = -340   GyY = 116   GyZ = -217                     |        |  |  |
| IMU 2<br>AcX = -544   AcY = -1260  | AcZ = 15792   Tmp = 25.05   GyX = -376   GyY = 143   GyZ = -58                      |        |  |  |
| IMU 3                              |                                                                                     |        |  |  |
|                                    | $2 \mid AcZ = 18556 \mid Tmp = 24.72 \mid GyX = -460 \mid GyY = 218 \mid GyZ = -10$ |        |  |  |
| IMU 1<br>AcX = -584   AcY = -1840  | $  \Delta c7 = 16328   Tmp = 25.24   GvX = -335   GvY = 123   Gv7 = -217$           |        |  |  |
| Autoscroll                         | No line ending \$ 9600                                                              | baud ‡ |  |  |
| <u> </u>                           |                                                                                     |        |  |  |

# MATLAB DATA ANALYSIS | MATHEMATICAL MODELING **USER INTERFACE**





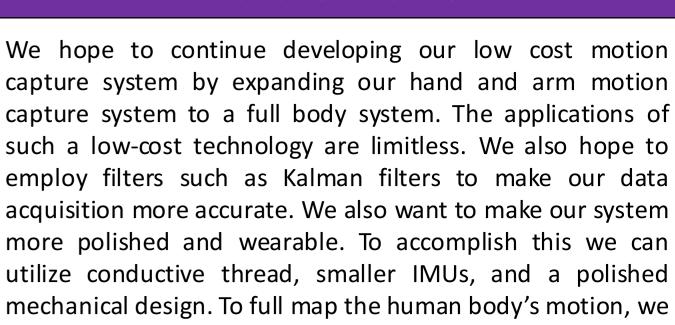
#### Pop-up Menus

| - √ | LEFT ARM DATA          | √   | Left Arm           |
|-----|------------------------|-----|--------------------|
|     | LEFT ARM MIN AND MAX   |     | Right Arm          |
|     | RIGHT ARM DATA         |     | Superimposed Both  |
|     | RIGHT ARM MIN AND MAX  |     | Left Hand          |
|     | LEFT HAND DATA         |     | Right Hand         |
|     | LEFT HAND MIN AND MAX  |     |                    |
|     | RIGHT HAND DATA        | -√- | REGULAR MOTION     |
|     | RIGHT HAND MIN AND MAX |     | MIN AND MAX MOTION |
|     |                        |     |                    |

We are capable of mapping all of the degrees of freedom of hand and arm motion with accuracy. Our analysis tool is able to superimpose left and right arm motion, export motion capture data to csv files to store a patient's progress throughout physical rehabilitation, and numerous graphical tools to analyze a patient's motion - such as vivid distinctions for minima and maxima, and the ability to graphically store instances of the patient's movements. The User Interface also includes algorithms that predict hand motion to make the graphical representation more digestible for both the patients and doctors. By implementing a vector representation system we were able to maximize complexity and accuracy of the graphical representation, while minimizing the render time of our animations.






### **Key Features**

### Acknowledgements

will have to better explore motion capture sensors.

**Pinkerton Foundation Driskill Foundation** Teachers: Ms. Hau-Yu Chu | Ms. Daniella DiLacqua





